

RSA-24VDC-1-5A S-R

Одноканальный электронный автоматический выключатель (ОЭАВ) для защиты потребителей сети 24 VDC при перегрузке или коротком замыкании. С выходом сигнала состояния, входом для сигнала сброса аварии и механической регулировкой уставки тока срабатывания защиты от 1 до 5А. Для установки в НКУ на несущих DIN-рейках.

Сертификат соответствия ТР ТС 004/2011

EA9C RU C-RU.HB93.B.03483/23

Сделано в России.

 Напряжение
 24 VDC -+30%

 Скорость срабатывания защиты
 <120 mS</td>

 Допуск и отклонение для уставки
 -+100 mA

 Диапазон рабочих температур, °C
 от -20 до +60

 Габариты
 20х34х120 мм

Диаграмма работы одноканального электронного автоматического выключателя

При протекании тока от источника питания к нагрузке через одноканальный электронный автоматический выключатель, ток контролируется по напряжению на резисторе. Если он превышает установленное значение, управляющая логика отключает полевой транзистор, блокируя прохождение тока к нагрузке.

Особенности одноканального электронного автоматического выключателя

ОЭАВ является более сложной активной версией классического плавкого предохранителя – пассивного элемента. Уникальные особенности ОЭАВ:

Скорость — время реакции устройства составляет миллисекунды, в отличие от нескольких, а то и десяток секунд для плавких предохранителей. За это время успевает сгореть дорогостоящее ПЛК, модули или НМІ, кроме самого плавкого предохранителя.

Гибкая настройка диапазона срабатывания – регулировка от 0,5A до 5A в отличие от плавких предохранителей с конкретным номиналом.

Точность срабатывания на выставленную уставку — обеспечивает защиту по выбранной уставки тока, на что не способен обычный предохранитель в цепи 24VDC (на это напряжение спроектирован данный девайс) обычные предохранители не адекватно себя ведут. И токи срабатывания у них сильно отличаются в большую сторону от тех, что на них указано при 250v.

ОЭАВ позволяет проводить многократные поверочные испытания на объекте. эксплуатации.

Фиксация аварии — остается выключенным после фиксации КЗ или перегрузки. Возобновить нормальную работу, если текущая ошибка исправлена. Нажав кнопку «Сброс/Reset» на самом реле или подать сигнал на клеммы R1-R2 дистанционно. В отличие от обычного предохранителя, который выгорает и нужен новый.

Эта возможность также полезна в тех случаях, когда замена предохранителя является сложной или само НКУ установлено в труднодоступном месте, например в Шахте на отметке -1000 метров.

Защита от обратной полярности — электронный предохранитель обеспечивает также защиту от обратной полярности, быстро отключая ток в случае неправильной полярности на входе. Подобное может произойти, например, при явно выраженном колебательном переходном процессе или при ошибочном подключении источника питания.

Рекомендуется установка в шкафах управления на цепи питания контроллеров и НМІ-панели.

Монтажное крепление выполнено на DIN-рейку.

Пример нештатной ситуации на выходе ОЭАВ: короткое замыкание

Монтажное крепление выполнено на DIN-рейку. При коротком замыкании на выходе ОЭАВ срабатывает внутренняя схема защиты и снимает напряжение на выходе устройства. Одноканальный электронный автоматический выключатель переходит в режим ожидания. В ручном или автоматическом режиме (дополнительная опция, таймер) квитируем ошибку превышения тока цепи как кнопкой на панели ОЭАВ, так и по внешним клеммам управления.

Пример нештатной ситуации: смена полярности на входе ОЭАВ

При смене полярности на входе ОЭАВ происходит шунтирование источника питания и напряжение не проходит до потребителя. В случае если источник питания не оборудован средствами собственной защиты, модуль ОЭАВ после превышения тока в цепи выше 2 А разрывает цепь физически, что оберегает оборудование от пожароопасной ситуации.

Пример нештатной ситуации с резервным питанием на входе PLC

При обратном токе происходит шунтирование выхода ОЭАВ, что вызывает срабатывание защиты резервного источника питания. В случае если резервный источник питания не оборудован средствами собственной защиты, необходимо установить второй модуль ОЭАВ в разрыв цепи резервного источника и потребителя.

Сложность подбора плавких предохранителей для цепей постоянного тока

Плавкие предохранители допускают работу как в цепях переменного, так и в цепях постоянного тока. Указанное рабочее напряжение именно при работе на переменном токе в цепи 220 вольт. В цепях постоянного тока из-за большей скорости протекания процессов и отсутствия нулевых переходов тока цепи на работу предохранителя в существенной мере оказывают влияние реактивные параметры цепи. Обычно параметры предохранителей на постоянном токе определяют экспериментально.

Пренебрегая этим правилом, зачастую выходит из строя дорогостоящее оборудование. Ниже приведены замеры испытаний.

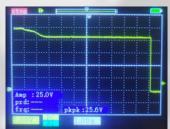
Сводная характеристика плавких предохранителей в цепи постоянного тока 24 В

Ток предохранителя	Ток нагрузки	Время срабатывания плавкого предохранителя	Время срабатывания эл. выключателя
1 A	2 A	10 сек.	0,12 сек.
2 A	2,8 A	6,5 сек.	0,12 сек.
3 A	5,3 A	30 сек.	0,12 сек.
3 A	5,4 A	5,5 сек.	0,12 сек.
3 A	5,5 A	1,5 сек.	0,12 сек.
3,15 A	5,8 A	2,5 сек.	0,12 сек.
Т4 А (керам.)	8,5 A	6,2 сек.	0,12 сек.
4 A	9,0 A	10 сек.	0,12 сек.
4 A	9,1 A	9,7 сек.	0,12 сек.
4 A	9,2 A	5,2 сек.	0,12 сек.
5 A	10 A	7,5 сек.	0,12 сек.
6 A	14,6 A	6 сек.	0,12 сек.

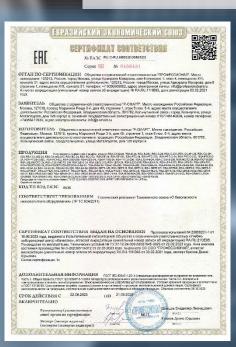
Как можно заметить из сводной таблицы (выделено красным), в некоторых случаях предохранитель и сам может стать источником повышенной температуры и источником возгорания при открытом монтаже.

Все испытания проведены ЭЛЕКТРОЛАБОРАТОРИЕЙ ООО «Р-СМАРТ»


зарегистрированной в РОСТЕХНАДЗОРЕ


Регистрационный № 9804 от «22» ноября 2024г.

Сводная характеристика плавких предохранителей и электронного выключателя в цепи постоянного тока 24 В



Осциллограмма испытаний

Электронная нагрузка для проведения испытаний плавких предохранителей

Перейти по QR-коду на сайт www.r-smart.ru для заказа ODAB RSA-24VDC

